Temperature TMDL Overview

Ryan Michie DEQ

Mid-Coast Implementation Ready TMDL Local Stakeholder Advisory Committee Meeting

> Wednesday May 16, 2012 Florence, Oregon

Oregon's Temperature Standards

- Oregon's Temperature Standard
- □ Temperature Analysis
- TWG Members

Why do we care about stream temperatures?

DEC

Oregon's Temperature Standard

Biologically Based Criteria

- Applied spatially and temporally based on fish use
- ☐ 13° Celsius (55.4° F) Spawning
- ☐ 16° Celsius (60.8° F) Core Cold Water Habitat
- □ 18° Celsius (64.4° F) Rearing & Migration
- 7-day average daily maximum

Natural Conditions Criteria

?? status unknown due to litigation

Implementing the Temperature Standard

- □ EQC temperature policy to minimize human warming
- Human Use Allowance 0.3° Celsius (0.24° F)
- ☐ TMDL goal is to minimize increases in temperature, not achieve an absolute temperature.

2. Data Collection

Temperature Data

- □ 350+ data stations analyzed (1999 2011)
- 200+ stations exceed the temperature standard
- □ 48+ streams identified as impaired 303(d) list

Flow and Habitat Data

- ☐ Instantaneous stream flow
- ☐ Continuous stream flow
- ☐ Stream velocity
- ☐ Stream width/depth
- □ Substrate
- □ Vegetation Type
- ☐ Vegetation Height
- ☐ Effective Shade

Effective Shade - Defined

Percent of the daily solar radiation blocked by vegetation and topography.

Solar₁ – Potential daily direct beam solar radiation load adjusted for julian day, solar altitude, solar azimuth and site elevation.

Where,

Solar₁: Potential Daily Direct Beam Solar Radiation Load Solar₂: Daily Direct Beam Solar Radiation Load Received at the Stream Surface

3. Model Setup

Channel Bottom

 \multimap Solar Radiation \multimap Longwave Radiation

--- Air Convection --- Bed Conduction

- Developed at Oregon State University
- □ Open source
- Peer reviewed
- Used all over the world for temperature studies
- Models stream temperature, solar radiation, and hydrology

Model Inputs

- Stream Position
- □ Channel Shape
- Vegetation/Landcover/Topography

Yachats River and North Fork Yachats confluence

Digitize stream centerline and channel banks

LiDAR bare earth model

Digitize landcover

Each polygon has a height and density assocation

Stream segmentation (50 meters)

Model Inputs

- Stream Position
- □ Channel Shape
- Vegetation/Landcover/Topography
- Climate Data
- □ Point Source Discharges
- Boundary Conditions

Stream Temperature & flow

Groundwater/Withdrawals

4. Existing Conditions Model Calibration

Where we are today!

Yachats River Current Effective Shade Grass Creek to Head of Tide

Yachats River upstream of Bend Creek - LASAR station 26531

DEQ

5. Natural Conditions Model Scenario

Natural Conditions Model Scenario

Objective: Estimate stream temperatures that would occur under a natural or restored condition.

- System Potential Vegetation
- Natural Stream Flows
- Channel Complexity & Morphology Improvements

Temperature TWG Members

Seeking individuals with expertise/experience in the following:

- Ecology riparian ecosystms, vegetation succession, invasive species, disturbance
- Soils
- Stream hydrology
- Riparian or in stream restoration/management
- Temperature data collection, modeling, or analysis

6. Source Assessment

7. Establish Allocations

Allocations

Amount of allowable temperature increase for different human sources

8. Identify Management Alternatives and Priority Areas

TWG Meeting 2

Existing Plans Assessment

Objective: Evaluate ability of existing plans and rules to minimize anthropogenic warming and meet the allocations.

- County/Municipal Riparian Ordinances
- Federal Northwest Forest Plan
- Oregon Forest Practices Act
- Agricultural Water Quality Plans & Rules

Additional Management Measures

Objective: Identify alternative management measures to achieve the TMDL load allocation

- Effective shade target
- Buffer width target
- □ Basal area target / tree density target
- Acres of overstory vegetation, etc

Objective: Identify priorities for implementation

- Focus watersheds
- Focus activities

- 9. Review Implementation Scenarios
- 10. Estimate Implementation Costs
- 11. Implementation Timeline
- 12. Monitoring Objectives

TWG Meeting 3

Questions?

